Replicated append-only logs sequentially order messages from the same author such that their ordering can be eventually recovered even with out-of-order and unreliable dissemination of individual messages. They are widely used for implementing replicated services in both clouds and peer-to-peer environments because they provide simple and efficient incremental reconciliation. However, existing designs of replicated append-only logs assume replicas faithfully maintain the sequential properties of logs and do not provide eventual consistency when malicious participants fork their logs by disseminating different messages to different replicas for the same index, which may result in partitioning of replicas according to which branch was first replicated. In this paper, we present 2P-BFT-Log, a two-phases replicated append-only log that provides eventual consistency in the presence of forks from malicious participants such that all correct replicas will eventually agree either on the most recent message of a valid log (first phase) or on the earliest point at which a fork occurred as well as on an irrefutable proof that it happened (second phase). We provide definitions, algorithms, and proofs of the key properties of the design, and explain one way to implement the design onto Git, an eventually consistent replicated database originally designed for distributed version control. Our design enables correct replicas to faithfully implement the happens-before relationship first introduced by Lamport that underpins most existing distributed algorithms, with eventual detection of forks from malicious participants to exclude the latter from further progress. This opens the door to adaptations of existing distributed algorithms to a cheaper detect and repair paradigm, rather than the more common and expensive systematic prevention of incorrect behaviour.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员