Ordinal response model is a popular and commonly used regression for ordered categorical data in a wide range of fields such as medicine and social sciences. However, it is empirically known that the existence of ``outliers'', combinations of the ordered categorical response and covariates that are heterogeneous compared to other pairs, makes the inference with the ordinal response model unreliable. In this article, we prove that the posterior distribution in the ordinal response model does not satisfy the posterior robustness with any link functions, i.e., the posterior cannot ignore the influence of large outliers. Furthermore, to achieve robust Bayesian inference in the ordinal response model, this article defines general posteriors in the ordinal response model with two robust divergences (the density-power and $\gamma$-divergences) based on the framework of the general posterior inference. We also provide an algorithm for generating posterior samples from the proposed posteriors. The robustness of the proposed methods against outliers is clarified from the posterior robustness and the index of robustness based on the Fisher-Rao metric. Through numerical experiments on artificial data and two real datasets, we show that the proposed methods perform better than the ordinary bayesian methods with and without outliers in the data for various link functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月28日
Arxiv
0+阅读 · 2023年6月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员