Contemporary research advances in nanotechnology and material science are rooted in the emergence of nanodevices as a versatile tool that harmonizes sensing, computing, wireless communication, data storage, and energy harvesting. These devices offer novel pathways for disease diagnostics, treatment, and monitoring within the bloodstreams. Ensuring precise localization of events of diagnostic interest, which underpins the concept of flow-guided in-body nanoscale localization, would provide an added diagnostic value to the detected events. Raw data generated by the nanodevices is pivotal for this localization and consist of an event detection indicator and the time elapsed since the last passage of a nanodevice through the heart. The energy constraints of the nanodevices lead to intermittent operation and unreliable communication, intrinsically affecting this data. This posits a need for comprehensively modelling the features of this data. These imperfections also have profound implications for the viability of existing flow-guided localization approaches, which are ill-prepared to address the intricacies of the environment. Our first contribution lies in an analytical model of raw data for flow-guided localization, dissecting how communication and energy capabilities influence the nanodevices' data output. This model acts as a vital bridge, reconciling idealized assumptions with practical challenges of flow-guided localization. Toward addressing these practical challenges, we also present an integration of Graph Neural Networks (GNNs) into the flow-guided localization paradigm. GNNs excel in capturing complex dynamic interactions inherent to the localization of events sensed by the nanodevices. Our results highlight the potential of GNNs not only to enhance localization accuracy but also extend coverage to encompass the entire bloodstream.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员