In the analysis of prognosis studies with time-to-event outcomes, dichotomization of patients is often made. As the evaluations of prognostic capacity, the survivals of groups with high/low expression of the biomarker are often estimated by the Kaplan-Meier method, and the difference between groups is summarized via the hazard ratio (HR). The high/low expressions are usually determined by study-specific cutoff values, which brings heterogeneity over multiple prognosis studies and difficulty to synthesizing the results in a simple way. In meta-analysis of diagnostic studies with binary outcomes, the summary receiver operating characteristics (SROC) analysis provides a useful cutoff-free summary over studies. Recently, this methodology has been extended to the time-dependent SROC analysis for time-to-event outcomes in meta-analysis of prognosis studies. In this paper, we propose a sensitivity analysis method for evaluating the impact of publication bias on the time-dependent SROC analysis. Our proposal extends the recently introduced sensitivity analysis method for meta-analysis of diagnostic studies based on the bivariate normal model on sensitivity and specificity pairs. To model the selective publication process specific to prognosis studies, we introduce a trivariate model on the time-dependent sensitivity and specificity and the log-transformed HR. Based on the proved asymptotic property of the trivariate model, we introduce a likelihood based sensitivity analysis method based on the conditional likelihood constrained by the expected proportion of published studies. We illustrate the proposed sensitivity analysis method through the meta-analysis of Ki67 for breast cancer. Simulation studies are conducted to evaluate the performance of the proposed method.


翻译:暂无翻译

1
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员