In this work a general semi-parametric multivariate model where the first two conditional moments are assumed to be multivariate time series is introduced. The focus of the estimation is the conditional mean parameter vector for discrete-valued distributions. Quasi-Maximum Likelihood Estimators (QMLEs) based on the linear exponential family are typically employed for such estimation problems when the true multivariate conditional probability distribution is unknown or too complex. Although QMLEs provide consistent estimates they may be inefficient. In this paper novel two-stage Multivariate Weighted Least Square Estimators (MWLSEs) are introduced which enjoy the same consistency property as the QMLEs but can provide improved efficiency with suitable choice of the covariance matrix of the observations. The proposed method allows for a more accurate estimation of model parameters in particular for count and categorical data when maximum likelihood estimation is unfeasible. Moreover, consistency and asymptotic normality of MWLSEs are derived. The estimation performance of QMLEs and MWLSEs is compared through simulation experiments and a real data application, showing superior accuracy of the proposed methodology.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员