Millimeter wave (mmWave) radars are popular for perception in vision-denied contexts due to their compact size. This paper explores emerging use-cases that involve static mount or momentarily-static compact radars, for example, a hovering drone. The key challenge with static compact radars is that their limited form-factor also limits their angular resolution. This paper presents Umbra, a mmWave high resolution imaging system, that introduces the concept of rotating mmWave "inverse pinholes" for angular resolution enhancement. We present the imaging system model, design, and evaluation of mmWave inverse pinholes. The inverse pinhole is attractive for its lightweight nature, which enables low-power rotation, upgrading static-mount radars. We also show how propellers in aerial vehicles act as natural inverse pinholes and can enjoy the benefits of high-resolution imaging even while they are momentarily static, e.g., hovering. Our evaluation shows Umbra resolving up to 2.5$^{\circ}$ with just a single antenna, a 5$\times$ improvement compared to 14$^{\circ}$ from a compact mmWave radar baseline.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Graph Transformer近期进展
专知会员服务
64+阅读 · 2023年1月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
AMD MI300X GPU Performance Analysis
Arxiv
0+阅读 · 10月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
21+阅读 · 2021年2月13日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关VIP内容
Graph Transformer近期进展
专知会员服务
64+阅读 · 2023年1月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
AMD MI300X GPU Performance Analysis
Arxiv
0+阅读 · 10月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
21+阅读 · 2021年2月13日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
29+阅读 · 2018年4月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员