As language models are increasingly included in human-facing machine learning tools, bias against demographic subgroups has gained attention. We propose FineDeb, a two-phase debiasing framework for language models that starts with contextual debiasing of embeddings learned by pretrained language models. The model is then fine-tuned on a language modeling objective. Our results show that FineDeb offers stronger debiasing in comparison to other methods which often result in models as biased as the original language model. Our framework is generalizable for demographics with multiple classes, and we demonstrate its effectiveness through extensive experiments and comparisons with state of the art techniques. We release our code and data on GitHub.


翻译:由于语言模型越来越多地被纳入人造机器学习工具,对人口分组的偏见引起了人们的注意。我们提议FineDeb,这是语言模型的两阶段分化框架,从背景上贬低通过预先培训的语言模型学习的嵌入点开始。然后,该模型根据语言模型的目标进行微调。我们的结果表明,与通常导致模型与原始语言模型一样有偏向的其他方法相比,FineDeb提供了更强烈的偏向性。我们的框架适用于多类人口,我们通过广泛的实验和与最新技术的比较来展示其有效性。我们发布了关于GitHub的代码和数据。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员