Many experimental time series measurements share unobserved causal drivers. Examples include genes targeted by transcription factors, ocean flows influenced by large-scale atmospheric currents, and motor circuits steered by descending neurons. Reliably inferring this unseen driving force is necessary to understand the intermittent nature of top-down control schemes in diverse biological and engineered systems. Here, we introduce a new unsupervised learning algorithm that uses recurrences in time series measurements to gradually reconstruct an unobserved driving signal. Drawing on the mathematical theory of skew-product dynamical systems, we identify recurrence events shared across response time series, which implicitly define a recurrence graph with glass-like structure. As the amount or quality of observed data improves, this recurrence graph undergoes a percolation transition manifesting as weak ergodicity breaking for random walks on the induced landscape -- revealing the shared driver's dynamics, even in the presence of strongly corrupted or noisy measurements. Across several thousand random dynamical systems, we empirically quantify the dependence of reconstruction accuracy on the rate of information transfer from a chaotic driver to the response systems, and we find that effective reconstruction proceeds through gradual approximation of the driver's dominant orbit topology. Through extensive benchmarks against classical and neural-network-based signal processing techniques, we demonstrate our method's strong ability to extract causal driving signals from diverse real-world datasets spanning ecology, genomics, fluid dynamics, and physiology.


翻译:暂无翻译

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2023年6月13日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2023年6月13日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
112+阅读 · 2020年2月5日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员