The shuffle model of local differential privacy is an advanced method of privacy amplification designed to enhance privacy protection with high utility. It achieves this by randomly shuffling sensitive data, making linking individual data points to specific individuals more challenging. However, most existing studies have focused on the shuffle model based on $(\epsilon_0,0)$-Locally Differentially Private (LDP) randomizers, with limited consideration for complex scenarios such as $(\epsilon_0,\delta_0)$-LDP or personalized LDP (PLDP). This hinders a comprehensive understanding of the shuffle model's potential and limits its application in various settings. To bridge this research gap, we propose a generalized shuffle framework that can be applied to any $(\epsilon_i,\delta_i)$-PLDP setting with personalized privacy parameters. This generalization allows for a broader exploration of the privacy-utility trade-off and facilitates the design of privacy-preserving analyses in diverse contexts. We prove that shuffled $(\epsilon_i,\delta_i)$-PLDP process approximately preserves $\mu$-Gaussian Differential Privacy with \mu = \sqrt{\frac{2}{\sum_{i=1}^{n} \frac{1-\delta_i}{1+e^{\epsilon_i}}-\max_{i}{\frac{1-\delta_{i}}{1+e^{\epsilon_{i}}}}}}. $ This approach allows us to avoid the limitations and potential inaccuracies associated with inequality estimations. To strengthen the privacy guarantee, we improve the lower bound by utilizing hypothesis testing} instead of relying on rough estimations like the Chernoff bound or Hoeffding's inequality. Furthermore, extensive comparative evaluations clearly show that our approach outperforms existing methods in achieving strong central privacy guarantees while preserving the utility of the global model. We have also carefully designed corresponding algorithms for average function, frequency estimation, and stochastic gradient descent.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员