This paper considers the problem of inferring the causal effect of a variable $Z$ on a dependently censored survival time $T$. We allow for unobserved confounding variables, such that the error term of the regression model for $T$ is correlated with the confounded variable $Z$. Moreover, $T$ is subject to dependent censoring. This means that $T$ is right censored by a censoring time $C$, which is dependent on $T$ (even after conditioning out the effects of the measured covariates). A control function approach, relying on an instrumental variable, is leveraged to tackle the confounding issue. Further, it is assumed that $T$ and $C$ follow a joint regression model with bivariate Gaussian error terms and an unspecified covariance matrix such that the dependent censoring can be handled in a flexible manner. Conditions under which the model is identifiable are given, a two-step estimation procedure is proposed, and it is shown that the resulting estimator is consistent and asymptotically normal. Simulations are used to confirm the validity and finite-sample performance of the estimation procedure. Finally, the proposed method is used to estimate the causal effect of job training programs on unemployment duration.


翻译:本文审议了一个变量Z$对受审查的生存时间的因果关系的推断问题。 我们允许出现未观察到的令人费解的变量,因此,美元回归模型的错误术语与混结变量Z美元相关。 此外,美元T美元受独立审查。这意味着,美元T$由审查时间C美元进行右审查,这取决于美元T美元(即便在限定了所测量的共变项的影响之后)。 一种依赖工具变量的控制功能方法被杠杆化,用于解决相互交织的问题。 此外,还假设美元T$和美元C$遵循一个联合回归模式,使用双变量Gausian错误术语和一个未具体说明的共变差矩阵,以便可以灵活地处理独立审查。 给出了模型可识别的条件,提出了两步估算程序,并表明由此得出的估算值是一致的,且是正常的。 模拟用于证实工作周期有效性和定数性估算程序所使用的工作周期是所使用的方法。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员