Poison-only Clean-label Backdoor Attacks aim to covertly inject attacker-desired behavior into DNNs by merely poisoning the dataset without changing the labels. To effectively implant a backdoor, multiple \textbf{triggers} are proposed for various attack requirements of Attack Success Rate (ASR) and stealthiness. Additionally, sample selection enhances clean-label backdoor attacks' ASR by meticulously selecting ``hard'' samples instead of random samples to poison. Current methods 1) usually handle the sample selection and triggers in isolation, leading to severely limited improvements on both ASR and stealthiness. Consequently, attacks exhibit unsatisfactory performance on evaluation metrics when converted to PCBAs via a mere stacking of methods. Therefore, we seek to explore the bidirectional collaborative relations between the sample selection and triggers to address the above dilemma. 2) Since the strong specificity within triggers, the simple combination of sample selection and triggers fails to substantially enhance both evaluation metrics, with generalization preserved among various attacks. Therefore, we seek to propose a set of components to significantly improve both stealthiness and ASR based on the commonalities of attacks. Specifically, Component A ascertains two critical selection factors, and then makes them an appropriate combination based on the trigger scale to select more reasonable ``hard'' samples for improving ASR. Component B is proposed to select samples with similarities to relevant trigger implanted samples to promote stealthiness. Component C reassigns trigger poisoning intensity on RGB colors through distinct sensitivity of the human visual system to RGB for higher ASR, with stealthiness ensured by sample selection, including Component B. Furthermore, all components can be strategically integrated into diverse PCBAs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员