This paper presents two direct parameterizations of stable and robust linear parameter-varying state-space (LPV-SS) models. The model parametrizations guarantee a priori that for all parameter values during training, the allowed models are stable in the contraction sense or have their Lipschitz constant bounded by a user-defined value $\gamma$. Furthermore, since the parametrizations are direct, the models can be trained using unconstrained optimization. The fact that the trained models are of the LPV-SS class makes them useful for, e.g., further convex analysis or controller design. The effectiveness of the approach is demonstrated on an LPV identification problem.


翻译:本文提出了两种稳定且robust的线性参数时变状态空间 (LPV-SS) 模型的直接参数化形式。这些模型参数化形式保证了在训练过程中的所有参数值下,所允许的模型在收缩意义下是稳定的,或者具有用户定义的Lipschitz常数上限$\gamma$的bound。此外,由于这些参数化形式是直接的,所以这些模型可以使用无约束优化进行训练。由于训练出的模型属于LPV-SS类,因此它们在凸分析或控制器设计等方面非常有用。本文通过一个LPV模型识别问题展示了该方法的有效性。

0
下载
关闭预览

相关内容

【干货书】决策优化模型,640页pdf
专知会员服务
78+阅读 · 2023年5月4日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月23日
VIP会员
相关VIP内容
【干货书】决策优化模型,640页pdf
专知会员服务
78+阅读 · 2023年5月4日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员