Aspect-based Sentiment Analysis (ABSA) has recently advanced into the multimodal domain, where user-generated content often combines text and images. However, existing multimodal ABSA (MABSA) models struggle to filter noisy visual signals, and effectively align aspects with opinion-bearing content across modalities. To address these challenges, we propose GateMABSA, a novel gated multimodal architecture that integrates syntactic, semantic, and fusion-aware mLSTM. Specifically, GateMABSA introduces three specialized mLSTMs: Syn-mLSTM to incorporate syntactic structure, Sem-mLSTM to emphasize aspect--semantic relevance, and Fuse-mLSTM to perform selective multimodal fusion. Extensive experiments on two benchmark Twitter datasets demonstrate that GateMABSA outperforms several baselines.
翻译:暂无翻译