The Mallows-Binomial distribution is the first joint statistical model for rankings and ratings (Pearce and Erosheva, 2022). Because frequentist estimation of the model parameters and their uncertainty is challenging, it is natural to consider the nonparametric bootstrap. However, it is not clear that the nonparametric bootstrap is asymptotically valid in this setting. This is because the Mallows-Binomial model is parameterized by continuous quantities whose discrete order affects the likelihood. In this note, we demonstrate that bootstrap uncertainty of the maximum likelihood estimates in the Mallows-Binomial model are asymptotically valid.


翻译:Mallows-Binomial分布法是排名和评级的第一个联合统计模型(Pearce和Erosheva, 2022年)。由于对模型参数的经常估计及其不确定性具有挑战性,因此自然考虑非参数性靴子陷阱。然而,尚不清楚非参数性靴子陷阱在此环境中是否具有同等效力。这是因为 Mallows-Binomial模型的参数是连续数量,其离散顺序会影响可能性。 在本说明中,我们表明,Mallows-Binomial模型中最大可能性估计的靴子陷阱不确定性是无效的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员