The COVID-19 outbreak rapidly became a pandemic in the first quarter of 2020, posing an unprecedented threat and challenge to healthcare systems and the public. Governments in nearly every country focused on immunization programs for the general population using mRNA vaccines against this disease, marking the first large-scale use of this technology. Previously overlooked research papers on mRNA vaccine preparation or administration gained prominence. The impact was documented bibliographically through a surge in citations these papers received. These reports exemplify the Sleeping Beauty bibliometric phenomenon, while the articles that triggered this awakening act as the Sweet Prince, leading to the resurgence of the previous papers' bibliometric impact. Here, a backward reference search was performed in the Scopus bibliographic database to identify Sleeping Beauties by applying the Beauty Coefficient metric. A total of 915 original research articles were published in 2020, citing 21,979 referenced papers, including 1,181 focused on mRNA vaccines, with 671 of these being original research reports. By setting a threshold of at least 30 citations received before 2020, 272 papers published between 2005 and 2022 were examined. The finding that nearly half of the papers included were published in scientific journals between 2020 and 2022 is explained by the fact that these works received a significant number of citations as preprints or prepublications. We found that 28 papers from this bibliographic portfolio exhibited a Beauty Coefficient following the Sleeping Beauty bibliometric phenomenon. Our findings reveal that disruptive technological innovations may be built upon previously neglected reports that experienced sharp citation increases, driven by their crucial applicability to worldwide distresses.


翻译:COVID-19疫情在2020年第一季度迅速演变为全球大流行,对医疗系统和公众构成了前所未有的威胁与挑战。各国政府普遍采用针对该疾病的mRNA疫苗开展全民免疫计划,标志着该技术首次实现大规模应用。此前被忽视的关于mRNA疫苗制备或给药的科研论文因此获得广泛关注。这种影响通过相关论文引文数量的激增得以在文献计量学上得到印证。这些报告体现了文献计量学中的“睡美人”现象,而触发此类觉醒的论文则扮演着“甜心王子”的角色,引领了先前论文计量影响力的复苏。本研究通过在Scopus文献数据库中实施逆向引文检索,运用“美人系数”指标识别“睡美人”文献。2020年发表的915篇原创研究论文共引用了21,979篇参考文献,其中1,181篇聚焦mRNA疫苗主题,包含671篇原创研究报告。通过设定“2020年前至少获得30次引用”的阈值,对2005年至2022年间发表的272篇论文进行了分析。近半数纳入论文发表于2020-2022年间的发现可归因于这些成果在预印本或预发表阶段已获得大量引用。我们从该文献集合中发现28篇论文呈现出符合“睡美人”文献计量学现象的“美人系数”。研究结果表明,颠覆性技术创新可能建立在先前被忽视的科研成果之上,这些成果因其对全球性危机的关键适用性而经历引文数量的急剧增长。

0
下载
关闭预览

相关内容

论文(Paper)是专知网站核心资料文档,包括全球顶级期刊、顶级会议论文,及全球顶尖高校博士硕士学位论文。重点关注中国计算机学会推荐的国际学术会议和期刊,CCF-A、B、C三类。通过人机协作方式,汇编、挖掘后呈现于专知网站。
专知会员服务
28+阅读 · 2021年1月29日
AutoML研究综述:让AI学习设计AI
机器之心
15+阅读 · 2019年5月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员