For any finite set $\mathcal{H} = \{H_1,\ldots,H_p\}$ of graphs, a graph is $\mathcal{H}$-subgraph-free if it does not contain any of $H_1,\ldots,H_p$ as a subgraph. We give a meta-classification for $\mathcal{H}$-subgraph-free graphs: assuming a problem meets some three conditions, then it is ``efficiently solvable'' if $\mathcal{H}$ contains a disjoint union of one or more paths and subdivided claws, and is ``computationally hard'' otherwise. The conditions are that the problem should be efficiently solvable on graphs of bounded treewidth, computationally hard on subcubic graphs, and computational hardness is preserved under edge subdivision. We illustrate the broad applicability of our meta-classification by obtaining a dichotomy between polynomial-time solvability and NP-completeness for many well-known partitioning, covering and packing problems, network design problems and width parameter problems. For other problems, we obtain a dichotomy between almost-linear-time solvability and having no subquadratic-time algorithm (conditioned on some hardness hypotheses). Along the way, we uncover and resolve several open questions from the literature, while adding many new ones.


翻译:对于任何限定的 $mathcal{H} = $H_ 1,\ldots, H_p<unk> $ 图表,如果图表不包含任何$H_ 1,\ldots, H_p$, 作为子图, 则图形为$mathcal{H} = 限定的 $mathcal{H} = $H_ 1,\ldots, H_p<unk> $ 图表为无负数, 图表为$mathcalcal{H} = = $H_ 1, 1, h_p} 图表为无负数, 图表为 $mathcalcalcal, $missionalable', $mgreability subility sublifild. 我们通过在多时时的可辨识的可辨识度和分数种文献的分解, 来说明我们元分类的广泛适用性“ ” 。</s>

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员