Quadratic minimization problems with orthogonality constraints (QMPO) play an important role in many applications of science and engineering. However, some existing methods may suffer from low accuracy or heavy workload for large-scale QMPO. Krylov subspace methods are popular for large-scale optimization problems. In this work, we propose a block Lanczos method for solving the large-scale QMPO. In the proposed method, the original problem is projected into a small-sized one, and the Riemannian Trust-Region method is employed to solve the reduced QMPO. Convergence results on the optimal solution, the optimal objective function value, the multiplier and the KKT error are established. Moreover, we give the convergence speed of optimal solution, and show that if the block Lanczos process terminates, then an exact KKT solution is derived. Numerical experiments illustrate the numerical behavior of the proposed algorithm, and demonstrate that it is more powerful than many state-of-the-art algorithms for large-scale quadratic minimization problems with orthogonality constraints.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
72+阅读 · 2022年7月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员