By learning the map between function spaces using carefully designed deep neural networks, the operator learning become a focused field in recent several years, and have shown considerable efficiency over traditional numerical methods on solving complicated problems such as differential equations, but the method is still disturbed with the concern of its accuracy and reliability. In this paper, combined with the structures and technologies of a popular numerical method, i.e. the spectral method, a general learning-based architecture named Spectral Operator Learning is introduced. One of its variants, Orthogonal Polynomials Neural Operator designed for partial differential equations with Dirichlet, Neumann and Robin boundary conditions is proposed later, of which the effectiveness, efficacy and accuracy of boundary conditions are illustrated by numerical experiments. The code will be available at https://github.com/liu-ziyuan-math/spectral_operator_learning after all the numerical results are summarised.


翻译:通过使用精心设计的深神经网络在功能空间之间学习地图,操作员学习成为近年来一个重点领域,在解决不同方程式等复杂问题的传统数字方法上显示出相当的效率,但这种方法仍然受到其准确性和可靠性的担忧。在本文中,结合流行数字方法的结构和技术,即光谱法,引入了一个名为光谱操作员学习的一般基于学习的结构。它的一个变体,即为Drichlet、Neumann和Robin边界条件部分差异方程式设计的Orthogonal多线性神经操作员,后来提出用数字实验来说明边界条件的有效性、效力和准确性。在对数字结果进行总结后,该代码将在https://githu.com/liu-ziyuan-math/光谱_operator_学习网站查阅。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2022年8月13日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年8月13日
Arxiv
24+阅读 · 2022年2月4日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员