The low-cost, user-friendly, and convenient nature of Automatic Fingerprint Recognition Systems (AFRS) makes them suitable for a wide range of applications. This spreading use of AFRS also makes them vulnerable to various security threats. Presentation Attack (PA) or spoofing is one of the threats which is caused by presenting a spoof of a genuine fingerprint to the sensor of AFRS. Fingerprint Presentation Attack Detection (FPAD) is a countermeasure intended to protect AFRS against fake or spoof fingerprints created using various fabrication materials. In this paper, we have proposed a Convolutional Neural Network (CNN) based technique that uses a Generative Adversarial Network (GAN) to augment the dataset with spoof samples generated from the proposed Open Patch Generator (OPG). This OPG is capable of generating realistic fingerprint samples which have no resemblance to the existing spoof fingerprint samples generated with other materials. The augmented dataset is fed to the DenseNet classifier which helps in increasing the performance of the Presentation Attack Detection (PAD) module for the various real-world attacks possible with unknown spoof materials. Experimental evaluations of the proposed approach are carried out on the Liveness Detection (LivDet) 2015, 2017, and 2019 competition databases. An overall accuracy of 96.20\%, 94.97\%, and 92.90\% has been achieved on the LivDet 2015, 2017, and 2019 databases, respectively under the LivDet protocol scenarios. The performance of the proposed PAD model is also validated in the cross-material and cross-sensor attack paradigm which further exhibits its capability to be used under real-world attack scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员