In this paper we apply our understanding of the radical enactivist agenda to the classic AI-hard problem of Natural Language Understanding. When Turing devised his famous test the assumption was that a computer could use language and the challenge would be to mimic human intelligence. It turned out playing chess and formal logic were easy compared to understanding what people say. The techniques of good old-fashioned AI (GOFAI) assume symbolic representation is the core of reasoning and by that paradigm human communication consists of transferring representations from one mind to another. However, one finds that representations appear in another's mind, without appearing in the intermediary language. People communicate by mind reading it seems. Systems with speech interfaces such as Alexa and Siri are of course common, but they are limited. Rather than adding mind reading skills, we introduced a "cheat" that enabled our systems to fake it. The cheat is simple and only slightly interesting to computer scientists and not at all interesting to philosophers. However, reading about the enactivist idea that we "directly perceive" the intentions of others, our cheat took on a new light and in this paper look again at how natural language understanding might actually work between humans.


翻译:在本文中,我们把对激进的成文主义议程的理解应用到经典的AI-hard自然语言理解问题。当图灵设计出他的著名测试时,图灵的假设是,计算机可以使用语言,而挑战则是模仿人类智慧。事实证明,玩象棋和正式逻辑比较容易理解人们说的话。古老的AI(GOFAI)技术的象征性表现是推理的核心,而人类交流的范式则包括将表达方式从一个思想转移到另一个思想。然而,人们发现,表达方式出现在另一个思想中,而没有出现在中间语言中。人们通过思维进行交流,人们阅读它似乎是很常见的。有像Alexa和Siri这样的语言界面的系统当然是有限的,但是它们不是增加读心术的技巧,而是我们引入了一种“热液”使我们的系统能够伪造它。这种欺骗对计算机科学家来说很简单,而且只是略为有趣,对哲学家来说根本不有趣。然而,读一下我们“直接认识”他人意图的成文论思想,我们从一个新的视角上看,我们在本文中再次审视自然语言理解如何在人类之间实际上可能起作用。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月15日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员