We investigate an operator on classes of languages. For each class $C$, it outputs a new class $FO^2(I_C)$ associated with a variant of two-variable first-order logic equipped with a signature$I_C$ built from $C$. For $C = \{\emptyset, A^*\}$, we get the variant $FO^2(<)$ equipped with the linear order. For $C = \{\emptyset, \{\varepsilon\},A^+, A^*\}$, we get the variant $FO^2(<,+1)$, which also includes the successor. If $C$ consists of all Boolean combinations of languages $A^*aA^*$ where $a$ is a letter, we get the variant $FO^2(<,Bet)$, which also includes "between relations". We prove a generic algebraic characterization of the classes $FO^2(I_C)$. It smoothly and elegantly generalizes the known ones for all aforementioned cases. Moreover, it implies that if $C$ has decidable separation (plus mild properties), then $FO^2(I_C)$ has a decidable membership problem. We actually work with an equivalent definition of \fodc in terms of unary temporal logic. For each class $C$, we consider a variant $TL(C)$ of unary temporal logic whose future/past modalities depend on $C$ and such that $TL(C) = FO^2(I_C)$. Finally, we also characterize $FL(C)$ and $PL(C)$, the pure-future and pure-past restrictions of $TL(C)$. These characterizations as well imply that if \Cs is a class with decidable separation, then $FL(C)$ and $PL(C)$ have decidable membership.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
140+阅读 · 2019年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员