The $k$-$\mathsf{XOR}$ problem is one of the most well-studied problems in classical complexity. We study a natural quantum analogue of $k$-$\mathsf{XOR}$, the problem of computing the ground energy of a certain subclass of structured local Hamiltonians, signed sums of $k$-local Pauli operators, which we refer to as $k$-$\mathsf{XOR}$ Hamiltonians. As an exhibition of the connection between this model and classical $k$-$\mathsf{XOR}$, we extend results on refuting $k$-$\mathsf{XOR}$ instances to the Hamiltonian setting by crafting a quantum variant of the Kikuchi matrix for CSP refutation, instead capturing ground energy optimization. As our main result, we show an $n^{O(\ell)}$-time classical spectral algorithm certifying ground energy at most $\frac{1}{2} + \varepsilon$ in (1) semirandom Hamiltonian $k$-$\mathsf{XOR}$ instances or (2) sums of Gaussian-signed $k$-local Paulis both with $O(n) \cdot \left(\frac{n}{\ell}\right)^{k/2-1} \log n /\varepsilon^4$ local terms, a tradeoff known as the refutation threshold. Additionally, we give evidence this tradeoff is tight in the semirandom regime via non-commutative Sum-of-Squares lower bounds embedding classical $k$-$\mathsf{XOR}$ instances as entirely classical Hamiltonians.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员