It is a major challenge to perform addressable and parallel logical operations on constant-rate quantum LDPC (qLDPC) codes. Indeed, the overhead of targeting specific logical qubits represents a crucial bottleneck in many quantum fault-tolerance schemes. We introduce fault-tolerant protocols for performing various addressable as well as parallel logical operations with constant space-time overhead, on a family of constant-rate and polynomial-distance qLDPC codes. Specifically, we construct gadgets for a large class of permutations of logical qubits. We apply these logical permutations to construct gadgets for applying a targeted Hadamard (or $CNOT$) gate on any chosen logical qubit (pair). We also construct gadgets for preparing logical code states, and for applying Hadamard gates on all logical qubits in a codeblock. All of our gadgets use constant quantum space-time overhead along with polynomially bounded classical computation. Prior protocols for such operations required larger overhead, or else relied on codes with certain symmetries that lack known asymptotic constructions. Our codes are given by tensor products of classical codes constructed from lossless expander graphs. Our core technical contribution is a constant-overhead code-switching procedure between 2- and 3-dimensional product codes, which generalizes Bombin's dimensional jump (arXiv:1412.5079). We prove that all of our gadgets exhibit a constant threshold under locally stochastic noise. Along the way, we develop a small-set flip decoder for high-dimensional product codes from lossless expanders. Our techniques yield additional interesting consequences, such as single-shot state preparation of 2-dimensional product codes with constant space-time overhead. We also propose a method for performing parallel non-Clifford gates by extending our techniques to codes supporting transversal application of such gates.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员