In this paper we propose an estimator of spot covariance matrix which ensure symmetric positive semi-definite estimations. The proposed estimator relies on a suitable modification of the Fourier covariance estimator in Malliavin and Mancino (2009) and it is consistent for suitable choices of the weighting kernel. The accuracy and the ability of the estimator to produce positive semi-definite covariance matrices is evaluated with an extensive numerical study, in comparison with the competitors present in the literature. The results of the simulation study are confirmed under many scenarios, that consider the dimensionality of the problem, the asynchronicity of data and the presence of several specification of market microstructure noise.


翻译:在本文中,我们提出了一种估计现货协方差矩阵的估计器,它确保了对称正半定估计。所提出的估计器依赖于对Malliavin和Mancino(2009年)中傅里叶协方差估计器的适当修改,并且在适当选择加权核的情况下是一致的。通过与文献中的竞争对手进行广泛的数值研究评估估计器的准确性和产生正半定协方差矩阵的能力。模拟研究的结果在考虑问题的维度、数据的异步性以及市场微观结构噪声的多个规范的情况下得到了证实。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年3月7日
专知会员服务
45+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
63+阅读 · 2020年3月4日
生成扩散模型漫谈:最优扩散方差估计(上)
PaperWeekly
0+阅读 · 2022年9月25日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关VIP内容
相关资讯
生成扩散模型漫谈:最优扩散方差估计(上)
PaperWeekly
0+阅读 · 2022年9月25日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员