REWA introduces a general theory of similarity based on witness-overlap structures. We show that whenever similarity between concepts can be expressed as monotone witness overlap -- whether arising from graph neighborhoods, causal relations, temporal structure, topological features, symbolic patterns, or embedding-based neighborhoods -- it admits a reduction to compact encodings with provable ranking preservation guarantees. REWA systems consist of: (1) finite witness sets $W(v)$, (2) semi-random bit assignments generated from each witness, and (3) monotonicity of expected similarity in the overlap $Δ(u, v) = |W(u) \cap W(v)|$. We prove that under an overlap-gap condition on the final witness sets -- independent of how they were constructed -- top-$k$ rankings are preserved using $m = O(\log(|V|/δ))$ bits. The witness-set formulation is compositional: any sequence of structural, temporal, causal, topological, information-theoretic, or learned transformations can be combined into pipelines that terminate in discrete witness sets. The theory applies to the final witness overlap, enabling modular construction of similarity systems from reusable primitives. This yields a vast design space: millions of composable similarity definitions inherit logarithmic encoding complexity. REWA subsumes and unifies Bloom filters, minhash, LSH bitmaps, random projections, sketches, and hierarchical filters as special cases. It provides a principled foundation for similarity systems whose behavior is governed by witness overlap rather than hash-function engineering. This manuscript presents the axioms, the main reducibility theorem, complete proofs with explicit constants, and a detailed discussion of compositional design, limitations, and future extensions including multi-bit encodings, weighted witnesses, and non-set representations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员