We present a nonparametric statistical test for determining whether an agent is following a given mixed strategy in a repeated strategic-form game given samples of the agent's play. This involves two components: determining whether the agent's frequencies of pure strategies are sufficiently close to the target frequencies, and determining whether the pure strategies selected are independent between different game iterations. Our integrated test involves applying a chi-squared goodness of fit test for the first component and a generalized Wald-Wolfowitz runs test for the second component. The results from both tests are combined using Bonferroni correction to produce a complete test for a given significance level $\alpha.$ We applied the test to publicly available data of human rock-paper-scissors play. The data consists of 50 iterations of play for 500 human players. We test with a null hypothesis that the players are following a uniform random strategy independently at each game iteration. Using a significance level of $\alpha = 0.05$, we conclude that 305 (61%) of the subjects are following the target strategy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月6日
Arxiv
0+阅读 · 2024年2月6日
Arxiv
0+阅读 · 2024年2月2日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月6日
Arxiv
0+阅读 · 2024年2月6日
Arxiv
0+阅读 · 2024年2月2日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
12+阅读 · 2020年12月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员