In this paper, we introduce a novel explicit family of subcodes of Reed-Solomon (RS) codes that efficiently achieve list decoding capacity with a constant output list size. Our approach builds upon the idea of large linear subcodes of RS codes evaluated on a subfield, similar to the method employed by Guruswami and Xing (STOC 2013). However, our approach diverges by leveraging the idea of {\it permuted product codes}, thereby simplifying the construction by avoiding the need of {\it subspace designs}. Specifically, the codes are constructed by initially forming the tensor product of two RS codes with carefully selected evaluation sets, followed by specific cyclic shifts to the codeword rows. This process results in each codeword column being treated as an individual coordinate, reminiscent of prior capacity-achieving codes, such as folded RS codes and univariate multiplicity codes. This construction is easily shown to be a subcode of an interleaved RS code, equivalently, an RS code evaluated on a subfield. Alternatively, the codes can be constructed by the evaluation of bivariate polynomials over orbits generated by \emph{two} affine transformations with coprime orders, extending the earlier use of a single affine transformation in folded RS codes and the recent affine folded RS codes introduced by Bhandari {\it et al.} (IEEE T-IT, Feb.~2024). While our codes require large, yet constant characteristic, the two affine transformations facilitate achieving code length equal to the field size, without the restriction of the field being prime, contrasting with univariate multiplicity codes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员