Sparse linear regression methods for high-dimensional data commonly assume that residuals have constant variance, which can be violated in practice. For example, Aphasia Quotient (AQ) is a critical measure of language impairment and informs treatment decisions, but it is challenging to measure in stroke patients. It is of interest to use high-resolution T2 neuroimages of brain damage to predict AQ. However, sparse regression models show marked evidence of heteroscedastic error even after transformations are applied. This violation of the homoscedasticity assumption can lead to bias in estimated coefficients, prediction intervals (PI) with improper length, and increased type I errors. Bayesian heteroscedastic linear regression models relax the homoscedastic error assumption but can enforce restrictive prior assumptions on parameters, and many are computationally infeasible in the high-dimensional setting. This paper proposes estimating high-dimensional heteroscedastic linear regression models using a heteroscedastic partitioned empirical Bayes Expectation Conditional Maximization (H-PROBE) algorithm. H-PROBE is a computationally efficient maximum a posteriori estimation approach that requires minimal prior assumptions and can incorporate covariates hypothesized to impact heterogeneity. We apply this method by using high-dimensional neuroimages to predict and provide PIs for AQ that accurately quantify predictive uncertainty. Our analysis demonstrates that H-PROBE can provide narrower PI widths than standard methods without sacrificing coverage. Narrower PIs are clinically important for determining the risk of moderate to severe aphasia. Additionally, through extensive simulation studies, we exhibit that H-PROBE results in superior prediction, variable selection, and predictive inference compared to alternative methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员