For years, adversarial training has been extensively studied in natural language processing (NLP) settings. The main goal is to make models robust so that similar inputs derive in semantically similar outcomes, which is not a trivial problem since there is no objective measure of semantic similarity in language. Previous works use an external pre-trained NLP model to tackle this challenge, introducing an extra training stage with huge memory consumption during training. However, the recent popular approach of contrastive learning in language processing hints a convenient way of obtaining such similarity restrictions. The main advantage of the contrastive learning approach is that it aims for similar data points to be mapped close to each other and further from different ones in the representation space. In this work, we propose adversarial training with contrastive learning (ATCL) to adversarially train a language processing task using the benefits of contrastive learning. The core idea is to make linear perturbations in the embedding space of the input via fast gradient methods (FGM) and train the model to keep the original and perturbed representations close via contrastive learning. In NLP experiments, we applied ATCL to language modeling and neural machine translation tasks. The results show not only an improvement in the quantitative (perplexity and BLEU) scores when compared to the baselines, but ATCL also achieves good qualitative results in the semantic level for both tasks without using a pre-trained model.


翻译:多年来,在自然语言处理(NLP)环境中广泛研究了对抗性培训。主要目标是使模型变得稳健,使类似的投入在语义相似的结果中产生类似的结果,这不是一个小问题,因为没有客观的语言语义相似性衡量标准。以前的工作使用外部培训前的NLP模式来应对这一挑战,引入一个额外的培训阶段,在培训期间大量记忆消耗。然而,最近在语言处理中进行对比学习的流行方法是获得类似限制的方便方式。对比学习方法的主要优点是,它的目标是将相似的数据点定位在彼此之间,从代表空间的不同方面更接近。在这项工作中,我们建议用对比学习(ATCL)进行对抗性培训,以便利用对比学习的好处对语言处理任务进行对抗性培训。核心思想是通过快速梯度方法(FGM)在投入的嵌入空间中进行线性扰动,并且通过对比学习来保持原始和扰动式的表达方式密切。在NLP实验中,我们用对比性学习(ATCL) 将ACTL的对比性培训结果用于B的升级,在测试中,而没有将AFL的升级为B的排序基准任务。在测试中,只是在测试中,在测试中,在测试中,在测试后,在测试后,在测试后,在测试后,在测试后将结果上也显示ADLUBLB的定量任务中只标值上的结果。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
45+阅读 · 2020年10月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
11+阅读 · 2020年5月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
7+阅读 · 2020年8月7日
VIP会员
相关资讯
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
11+阅读 · 2020年5月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员