Complete reliance on the fitted model in response surface experiments is risky and relaxing this assumption, whether out of necessity or intentionally, requires an experimenter to account for multiple conflicting objectives. This work provides a methodological framework of a compound optimality criterion comprising elementary criteria responsible for: (i) the quality of the confidence region-based inference to be done using the fitted model (DP-/LP-optimality); (ii) improving the ability to test for the lack-of-fit from specified potential model contamination in the form of extra polynomial terms; and (iii) simultaneous minimisation of the variance and bias of the fitted model parameters arising from this misspecification. The latter two components have been newly developed in accordance with the model-independent 'pure error' approach to the error estimation. The compound criteria and design construction were adapted to restricted randomisation frameworks: blocked and multistratum experiments, where the stratum-by-stratum approach was adopted. A point-exchange algorithm was employed for searching for nearly optimal designs. The theoretical work is accompanied by one real and two illustrative examples to explore the relationship patterns among the individual components and characteristics of the optimal designs, demonstrating the attainable compromises across the competing objectives and driving some general practical recommendations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员