In machine learning (ML), researchers and engineers seem to be at odds. System implementers would prefer models to be declarative, with detailed type information and semantic restrictions that allow models to be optimised, rearranged and parallelised. Yet practitioners show an overwhelming preference for dynamic, imperative languages with mutable state, and much engineering effort is spent bridging the resulting semantic divide. Is there a fundamental conflict? This article explores why imperative and functional styles are used, and how future language designs might get the best of both worlds.


翻译:在机器学习(ML ), 研究人员和工程师似乎不尽相同。 系统实施者更希望模型具有宣示性,拥有详细的类型信息和语义限制,允许模型优化、重新排列和平行化。 但实践者表现出压倒性偏爱动态的、紧迫的、具有变异状态的语言,并花费了大量的工程努力来弥补由此产生的语义鸿沟。 是否存在根本性的冲突?本文章探讨了为什么使用必要性和功能风格,以及未来语言设计如何能成为两个世界的最佳语言。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年8月10日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员