In this paper, by introducing a class of absolute value functions, we study the error bounds and perturbation bounds of two types of absolute value equations (AVEs): Ax -B|x|= b and Ax -|Bx|= b. Some useful error bounds and perturbation bounds for the above two types of absolute value equations are presented. By applying the absolute value equations, we obtain some useful error bounds and perturbation bounds for the horizontal linear complementarity problem (HLCP). Incidentally, two new error bounds for linear complementarity problem (LCP) are given, coincidentally, which are equal to the existing result. Without constraint conditions, a new perturbation bound for the LCP is given as well. Besides, without limiting the matrix type, some computable estimates for the above upper bounds are given, which are sharper than some existing results under certain conditions. Some numerical examples for the AVEs from the LCP are given to show the feasibility of the perturbation bounds.


翻译:在本文中,通过引入绝对值函数的类别,我们研究了两种绝对值方程式(AVes)的错误界限和扰动界限:Ax-B ⁇ x ⁇ b和Ax- ⁇ Bx ⁇ b。为以上两种绝对值方程式提供了一些有用的错误界限和扰动界限。通过应用绝对值方程式,我们获得了一些有用的错误界限和对水平线性互补问题(CPL)的扰动界限。顺便提一下,对线性互补问题(LCP)给出了两个新的错误界限,这与现有结果相等。此外,在没有限制条件的情况下,还给出了受LCP约束的新的扰动界限。此外,在不限制矩阵类型的情况下,还给出了以上上方方方程式的一些可比较的估计数,这些估计数比某些条件下的某些现有结果要清晰。一些LCPAVes的数字示例显示了扰动界限的可行性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月19日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年8月19日
Arxiv
24+阅读 · 2022年2月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员