Smart cities and pervasive IoT deployments have generated interest in IoT data analysis across transportation and urban planning. At the same time, Large Language Models offer a new interface for exploring IoT data - particularly through natural language. Users today face two key challenges when working with IoT data using LLMs: (1) data collection infrastructure is expensive, producing terabytes of low-level sensor readings that are too granular for direct use, and (2) data analysis is slow, requiring iterative effort and technical expertise. Directly feeding all IoT telemetry to LLMs is impractical due to finite context windows, prohibitive token costs at scale, and non-interactive latencies. What is missing is a system that first parses a user's query to identify the analytical task, then selects the relevant data slices, and finally chooses the right representation before invoking an LLM. We present Flash-Fusion, an end-to-end edge-cloud system that reduces the IoT data collection and analysis burden on users. Two principles guide its design: (1) edge-based statistical summarization (achieving 73.5% data reduction) to address data volume, and (2) cloud-based query planning that clusters behavioral data and assembles context-rich prompts to address data interpretation. We deploy Flash-Fusion on a university bus fleet and evaluate it against a baseline that feeds raw data to a state-of-the-art LLM. Flash-Fusion achieves a 95% latency reduction and 98% decrease in token usage and cost while maintaining high-quality responses. It enables personas across disciplines - safety officers, urban planners, fleet managers, and data scientists - to efficiently iterate over IoT data without the burden of manual query authoring or preprocessing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员