Quantile treatment effects (QTEs) can characterize the potentially heterogeneous causal effect of a treatment on different points of the entire outcome distribution. Propensity score (PS) methods are commonly employed for estimating QTEs in non-randomized studies. Empirical and theoretical studies have shown that insufficient and unnecessary adjustment for covariates in PS models can lead to bias and efficiency loss in estimating treatment effects. Striking a balance between bias and efficiency through variable selection is a crucial concern in casual inference. It is essential to acknowledge that the covariates related treatment and outcome may vary across different quantiles of the outcome distribution. However, previous studies have overlooked to adjust for different covariates separately in the PS models when estimating different QTEs. In this article, we proposed the quantile regression outcome-adaptive lasso (QROAL) method to select covariates that can provide unbiased and efficient estimates of QTEs. A distinctive feature of our proposed method is the utilization of linear quantile regression models for constructing penalty weights, enabling covariate selection in PS models separately when estimating different QTEs. We conducted simulation studies to show the superiority of our proposed method over the outcome-adaptive lasso (OAL) method in variable selection. Moreover, the proposed method exhibited favorable performance compared to the OAL method in terms of root mean square error in a range of settings, including both homogeneous and heterogeneous scenarios. Additionally, we applied the QROAL method to datasets from the China Health and Retirement Longitudinal Study (CHARLS) to explore the impact of smoking status on the severity of depression symptoms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员