Data exfiltration attacks have led to huge data breaches. Recently, the Equifax attack affected 147M users and a third-party library - Apache Struts - was alleged to be responsible for it. These attacks often exploit the fact that sensitive data are stored unencrypted in process memory and can be accessed by any function executing within the same process, including untrusted third-party library functions. This paper presents StackVault, a kernel-based system to prevent sensitive stack-based data from being accessed in an unauthorized manner by intra-process functions. Stack-based data includes data on stack as well as data pointed to by pointer variables on stack. StackVault consists of three components: (1) a set of programming APIs to allow users to specify which data needs to be protected, (2) a kernel module which uses unforgeable function identities to reliably carry out the sensitive data protection, and (3) an LLVM compiler extension that enables transparent placement of stack protection operations. The StackVault system automatically enforces stack protection through spatial and temporal access monitoring and control over both sensitive stack data and untrusted functions. We implemented StackVault and evaluated it using a number of popular real-world applications, including gRPC. The results show that StackVault is effective and efficient, incurring only up to 2.4% runtime overhead.


翻译:最近,Equifax攻击影响到147M用户和第三方图书馆 -- -- Apache Struts -- -- 据称应对这一攻击负责。这些攻击经常利用敏感数据在过程记忆中未经加密存储,可由在同一过程中执行的任何功能进入,包括未经信任的第三方图书馆功能。本文展示了StackVault,这是一个以内核为基础的系统,以防止以内部处理功能未经授权的方式获取敏感堆叠数据。基于堆叠的数据包括堆叠数据以及堆叠点变量标出的数据。StackVault由三个组成部分组成:(1)一套编程API系统,使用户能够指定哪些数据需要保护,(2)一个使用不可靠功能身份可靠地执行敏感数据保护的内核模块,(3)一个LLLLVM编集扩展系统,使堆叠保护操作能够透明地进行。StackVault系统通过对敏感堆叠数据进行空间和时间访问监控和对堆叠变量进行数据控制,并不受信任地控制。 StackVaultVault a restal a lax Vlaftal a restime a laftal a restimal a resutal abal abal affotal abal affacts.

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
6+阅读 · 2019年4月25日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员