The Functional Machine Calculus (FMC) was recently introduced as a generalization of the lambda-calculus to include higher-order global state, probabilistic and non-deterministic choice, and input and output, while retaining confluence. The calculus can encode both the call-by-name and call-by-value semantics of these effects. This is enabled by two independent generalisations, both natural from the perspective of the FMC's operational semantics, which is given by a simple multi-stack machine. The first generalization decomposes the syntax of the lambda-calculus in a way that allows for sequential composition of terms and the encoding of reduction strategies. Specifically, there exist translations of the call-by-name and call-by-value lambda-calculus which preserve operational semantics. The second parameterizes application and abstraction in terms of 'locations' (corresponding to the multiple stacks of the machine), which gives a unification of the operational semantics, syntax, and reduction rules of the given effects with those of the lambda-calculus. The FMC further comes equipped with a simple type system which restricts and captures the behaviour of effects. This thesis makes two main contributions, showing that two fundamental properties of the lambda-calculus are preserved by the FMC. The first is to show that the categorical semantics of the FMC, modulo an appropriate equational theory, is given by the free Cartesian closed category. The equational theory is validated by a notion of observational equivalence. The second contribution is a proof that typed FMC-terms are strongly normalising. This is an extension (and small simplification) of Gandy's proof for the lambda-calculus, which additionally emphasizes its latent operational intuition.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年7月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员