The dual of a planar graph $G$ is a planar graph $G^*$ that has a vertex for each face of $G$ and an edge for each pair of adjacent faces of $G$. The profound relationship between a planar graph and its dual has been the algorithmic basis for solving numerous (centralized) classical problems on planar graphs. In the distributed setting however, the only use of planar duality is for finding a recursive decomposition of $G$ [DISC 2017, STOC 2019]. We extend the distributed algorithmic toolkit to work on the dual graph $G^*$. These tools can then facilitate various algorithms on $G$ by solving a suitable dual problem on $G^*$. Given a directed planar graph $G$ with positive and negative edge-lengths and hop-diameter $D$, our key result is an $\tilde{O}(D^2)$-round algorithm for Single Source Shortest Paths on $G^*$, which then implies an $\tilde{O}(D^2)$-round algorithm for Maximum $st$-Flow on $G$. Prior to our work, no $\tilde{O}(\text{poly}(D))$-round algorithm was known for Maximum $st$-Flow. We further obtain a $D\cdot n^{o(1)}$-rounds $(1-\epsilon)$-approximation algorithm for Maximum $st$-Flow on $G$ when $G$ is undirected and $st$-planar. Finally, we give a near optimal $\tilde O(D)$-round algorithm for computing the weighted girth of $G$. The main challenges in our work are that $G^*$ is not the communication graph (e.g., a vertex of $G$ is mapped to multiple vertices of $G^*$), and that the diameter of $G^*$ can be much larger than $D$ (i.e., possibly by a linear factor). We overcome these challenges by carefully defining and maintaining subgraphs of the dual graph $G^*$ while applying the recursive decomposition on the primal graph $G$. The main technical difficulty, is that along the recursive decomposition, a face of $G$ gets shattered into (disconnected) components yet we still need to treat it as a dual node.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2023年5月22日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员