Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.


翻译:可靠的行人检测是实现自动驾驶系统的关键步骤。然而,当前性能基准存在缺陷。验证数据集各子集所采用的现有指标无法对行人检测深度神经网络进行真实的性能评估。由于图像分割提供了街道场景的细粒度信息,它可以作为在行人检测器评估过程中自动区分不同类型错误的起点。本研究提出了行人检测的八种不同错误类别,并针对这些错误类别提出了新的性能比较指标。我们使用新指标比较了简化版APD的各种骨干网络,展示了一种更细粒度且稳健的模型比较方法,尤其在安全关键性能方面。通过采用相对简单的架构,我们在CityPersons-reasonable数据集上(无需额外训练数据)实现了最先进的性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员