In Influence Maximization (IM), the objective is to -- given a budget -- select the optimal set of entities in a network to target with a treatment so as to maximize the total effect. For instance, in marketing, the objective is to target the set of customers that maximizes the total response rate, resulting from both direct treatment effects on targeted customers and indirect, spillover, effects that follow from targeting these customers. Recently, new methods to estimate treatment effects in the presence of network interference have been proposed. However, the issue of how to leverage these models to make better treatment allocation decisions has been largely overlooked. Traditionally, in Uplift Modeling (UM), entities are ranked according to estimated treatment effect, and the top entities are allocated treatment. Since, in a network context, entities influence each other, the UM ranking approach will be suboptimal. The problem of finding the optimal treatment allocation in a network setting is combinatorial and generally has to be solved heuristically. To fill the gap between IM and UM, we propose OTAPI: Optimizing Treatment Allocation in the Presence of Interference to find solutions to the IM problem using treatment effect estimates. OTAPI consists of two steps. First, a causal estimator is trained to predict treatment effects in a network setting. Second, this estimator is leveraged to identify an optimal treatment allocation by integrating it into classic IM algorithms. We demonstrate that this novel method outperforms classic IM and UM approaches on both synthetic and semi-synthetic datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月6日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员