Gradient optimization algorithms using epochs, that is those based on stochastic gradient descent without replacement (SGDo), are predominantly used to train machine learning models in practice. However, the mathematical theory of SGDo and related algorithms remain underexplored compared to their "with replacement" and "one-pass" counterparts. In this article, we propose a stochastic, continuous-time approximation to SGDo with additive noise based on a Young differential equation driven by a stochastic process we call an "epoched Brownian motion". We show its usefulness by proving the almost sure convergence of the continuous-time approximation for strongly convex objectives and learning rate schedules of the form $u_t = \frac{1}{(1+t)^β}, β\in (0,1)$. Moreover, we compute an upper bound on the asymptotic rate of almost sure convergence, which is as good or better than previous results for SGDo.


翻译:基于轮次(epoch)的梯度优化算法,即采用无放回随机梯度下降(SGDo)的方法,在实践中被广泛用于训练机器学习模型。然而,相较于其“有放回”和“单次遍历”的对应算法,SGDo及相关算法的数学理论仍相对缺乏深入探索。本文提出了一种基于“轮次化布朗运动”随机过程驱动的Young微分方程的随机连续时间逼近方法,用于近似SGDo并引入加性噪声。通过证明在强凸目标函数及学习率调度为$u_t = \\frac{1}{(1+t)^\\beta}, \\beta \\in (0,1)$形式下,该连续时间逼近几乎必然收敛,我们展示了其有效性。此外,我们计算了几乎必然收敛渐近速率的上界,该结果优于或等同于先前针对SGDo的研究成果。

0
下载
关闭预览

相关内容

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员