Deep fakes became extremely popular in the last years, also thanks to their increasing realism. Therefore, there is the need to measures human's ability to distinguish between real and synthetic face images when confronted with cutting-edge creation technologies. We describe the design and results of a perceptual experiment we have conducted, where a wide and diverse group of volunteers has been exposed to synthetic face images produced by state-of-the-art Generative Adversarial Networks (namely, PG-GAN, StyleGAN, StyleGAN2). The experiment outcomes reveal how strongly we should call into question our human ability to discriminate real faces from synthetic ones generated through modern AI.


翻译:在过去几年里,深层假冒也由于其日益现实主义而变得极为受欢迎。 因此,在面对尖端的创造技术时,有必要衡量人类区分真实面像和合成面像的能力。 我们描述了我们所进行感知性实验的设计和结果,在这个实验中,广泛而多样的志愿者群体接触了由最先进的基因对抗网络(即PG-GAN、StyleGAN、StyleGAN2)制作的合成面像(即PG-GAN、StyleGAN、StyleGAN2)。 实验结果显示,我们应该如何强烈地质疑人类区分真实面像和通过现代人工智能生成的合成面像的能力。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员