Sequential testing problems involve a complex system with several components, each of which is "working" with some independent probability. The outcome of each component can be determined by performing a test, which incurs some cost. The overall system status is given by a function $f$ of the outcomes of its components. The goal is to evaluate this function $f$ by performing tests at the minimum expected cost. While there has been extensive prior work on this topic, provable approximation bounds are mainly limited to simple functions like ``k-out-of-n'' and halfspaces. We consider significantly more general "score classification" functions, and provide the first constant factor approximation algorithm (improving over a previous logarithmic approximation ratio). Moreover, our policy is non adaptive: it just involves performing tests in an a priori fixed order. We also consider the related halfspace evaluation problem, where we want to evaluate some function on $d$ halfspaces (e.g., intersection of halfspaces). We show that our approach provides an $O(d^2\log d)$-approximation algorithm for this problem. Our algorithms also extend to the setting of "batched'' tests, where multiple tests can be performed simultaneously while incurring an extra setup cost. Finally, we perform computational experiments that demonstrate the practical performance of our algorithm for score classification. We observe that, for most instances, the cost of our algorithm is within $50\%$ of an information-theoretic lower bound on the optimal value.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Robust Losses for Decision-Focused Learning
Arxiv
0+阅读 · 2023年10月6日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员