We study a new graph separation problem called Multiway Near-Separator. Given an undirected graph $G$, integer $k$, and terminal set $T \subseteq V(G)$, it asks whether there is a vertex set $S \subseteq V(G) \setminus T$ of size at most $k$ such that in graph $G-S$, no pair of distinct terminals can be connected by two pairwise internally vertex-disjoint paths. Hence each terminal pair can be separated in $G-S$ by removing at most one vertex. The problem is therefore a generalization of (Node) Multiway Cut, which asks for a vertex set for which each terminal is in a different component of $G-S$. We develop a fixed-parameter tractable algorithm for Multiway Near-Separator running in time $2^{O(k \log k)} * n^{O(1)}$. Our algorithm is based on a new pushing lemma for solutions with respect to important separators, along with two problem-specific ingredients. The first is a polynomial-time subroutine to reduce the number of terminals in the instance to a polynomial in the solution size $k$ plus the size of a given suboptimal solution. The second is a polynomial-time algorithm that, given a graph $G$ and terminal set $T \subseteq V(G)$ along with a single vertex $x \in V(G)$ that forms a multiway near-separator, computes a 14-approximation for the problem of finding a multiway near-separator not containing $x$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员