Mathematical notation makes up a large portion of STEM literature, yet, finding semantic representations for formulae remains a challenging problem. Because mathematical notation is precise, and its meaning changes significantly with small character shifts, the methods that work for natural text do not necessarily work well for mathematical expressions. In this work, we describe an approach for representing mathematical expressions in a continuous vector space. We use the encoder of a sequence-to-sequence architecture, trained on visually different but mathematically equivalent expressions, to generate vector representations (or embeddings). We compare this approach with an autoencoder and show that the former is better at capturing mathematical semantics. Finally, to expedite future research, we publish a corpus of equivalent transcendental and algebraic expression pairs.


翻译:

0
下载
关闭预览

相关内容

数学是关于数量、结构、变化等主题的探索。
知识增强预训练语言模型:全面综述
专知会员服务
96+阅读 · 2021年10月19日
专知会员服务
124+阅读 · 2020年9月8日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
几种句子表示方法的比较
AINLP
15+阅读 · 2019年9月21日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关VIP内容
知识增强预训练语言模型:全面综述
专知会员服务
96+阅读 · 2021年10月19日
专知会员服务
124+阅读 · 2020年9月8日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员