In this paper we investigate two-point algebraic-geometry codes (AG codes) coming from the Beelen-Montanucci (BM) maximal curve. We study properties of certain two-point Weierstrass semigroups of the curve and use them for determining a lower bound on the minimum distance of such codes. AG codes with better parameters with respect to comparable two-point codes from the Garcia-G\"uneri-Stichtenoth (GGS) curve are discovered.


翻译:在本文中,我们调查了来自Beelen-Montanucci(BM)最大曲线的两点代数-几何码(AG代码),我们研究了曲线中某些两点Weierstrass半组的特性,并使用这些特性来确定这些曲线最低距离的下限。 发现了Garcia-G\"uneri-Stichtenoth(GGS)曲线上比较的两点码具有较好参数的AG代码。

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2021年5月10日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
82+阅读 · 2021年5月10日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员