To assist underwater object detection for better performance, image enhancement technology is often used as a pre-processing step. However, most of the existing enhancement methods tend to pursue the visual quality of an image, instead of providing effective help for detection tasks. In fact, image enhancement algorithms should be optimized with the goal of utility improvement. In this paper, to adapt to the underwater detection tasks, we proposed a lightweight dynamic enhancement algorithm using a contribution dictionary to guide low-level corrections. Dynamic solutions are designed to capture differences in detection preferences. In addition, it can also balance the inconsistency between the contribution of correction operations and their time complexity. Experimental results in real underwater object detection tasks show the superiority of our proposed method in both generalization and real-time performance.


翻译:为了帮助探测水下物体,提高图像技术往往被用作预处理步骤,但大多数现有增强方法倾向于追求图像的视觉质量,而不是为探测任务提供有效的帮助。事实上,图像增强算法应当优化,目标是改进效用。在本文件中,为了适应水下探测任务,我们建议使用一个贡献字典来指导低水平校正。动态解决方案旨在捕捉探测偏好方面的差异。此外,它还可以平衡校正作业的贡献与其时间复杂性之间的不一致。实际水下物体探测任务的实验结果显示了我们拟议方法在一般化和实时性能方面的优势。

0
下载
关闭预览

相关内容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:计算机性能建模、测量和评估国际研讨会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/performance/
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月27日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员