Fine-grained entity typing (FET) aims to assign proper semantic types to entity mentions according to their context, which is a fundamental task in various entity-leveraging applications. Current FET systems usually establish on large-scale weakly-supervised/distantly annotation data, which may contain abundant noise and thus severely hinder the performance of the FET task. Although previous studies have made great success in automatically identifying the noisy labels in FET, they usually rely on some auxiliary resources which may be unavailable in real-world applications (e.g. pre-defined hierarchical type structures, human-annotated subsets). In this paper, we propose a novel approach to automatically correct noisy labels for FET without external resources. Specifically, it first identifies the potentially noisy labels by estimating the posterior probability of a label being positive or negative according to the logits output by the model, and then relabel candidate noisy labels by training a robust model over the remaining clean labels. Experiments on two popular benchmarks prove the effectiveness of our method. Our source code can be obtained from https://github.com/CCIIPLab/DenoiseFET.


翻译:精密实体打字(FET) 旨在根据实体的背景,为所提及实体指定适当的语义类型,这是各种实体杠杆应用中的一项基本任务。当前的FET系统通常在大规模微弱监督/远处注解数据上建立,其中可能含有大量噪音,从而严重妨碍FET任务的执行。虽然先前的研究在自动识别FET中的噪音标签方面取得了很大成功,但它们通常依赖在现实世界应用程序中可能无法使用的一些辅助资源(例如,预先界定的等级类型结构,人注解子集)。在本文件中,我们提出了一个新颖的方法,在没有外部资源的情况下自动纠正FET的噪音标签。具体地说,它首先通过估计一个标签根据模型的逻辑输出呈正或负的远端概率来识别潜在的噪音标签,然后通过对其余的清洁标签进行坚固模型的再贴标签。两个流行基准的实验证明了我们的方法的有效性。我们的源代码可以从https://github.com/CCIPLAB/DENS。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员