We review distributionally robust optimization (DRO), a principled approach for constructing statistical estimators that hedge against the impact of deviations in the expected loss between the training and deployment environments. Many well-known estimators in statistics and machine learning (e.g. AdaBoost, LASSO, ridge regression, dropout training, etc.) are distributionally robust in a precise sense. We hope that by discussing the DRO interpretation of well-known estimators, statisticians who may not be too familiar with DRO may find a way to access the DRO literature through the bridge between classical results and their DRO equivalent formulation. On the other hand, the topic of robustness in statistics has a rich tradition associated with removing the impact of contamination. Thus, another objective of this paper is to clarify the difference between DRO and classical statistical robustness. As we will see, these are two fundamentally different philosophies leading to completely different types of estimators. In DRO, the statistician hedges against an environment shift that occurs after the decision is made; thus DRO estimators tend to be pessimistic in an adversarial setting, leading to a min-max type formulation. In classical robust statistics, the statistician seeks to correct contamination that occurred before a decision is made; thus robust statistical estimators tend to be optimistic leading to a min-min type formulation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月7日
Arxiv
23+阅读 · 2022年2月24日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年3月7日
Arxiv
23+阅读 · 2022年2月24日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员