As Large Language Models (LLMs) gain in popularity, it is important to understand how novice programmers use them. We present a thematic analysis of 33 learners, aged 10-17, independently learning Python through 45 code-authoring tasks using Codex, an LLM-based code generator. We explore several questions related to how learners used these code generators and provide an analysis of the properties of the written prompts and the generated code. Specifically, we explore (A) the context in which learners use Codex, (B) what learners are asking from Codex, (C) properties of their prompts in terms of relation to task description, language, and clarity, and prompt crafting patterns, (D) the correctness, complexity, and accuracy of the AI-generated code, and (E) how learners utilize AI-generated code in terms of placement, verification, and manual modifications. Furthermore, our analysis reveals four distinct coding approaches when writing code with an AI code generator: AI Single Prompt, where learners prompted Codex once to generate the entire solution to a task; AI Step-by-Step, where learners divided the problem into parts and used Codex to generate each part; Hybrid, where learners wrote some of the code themselves and used Codex to generate others; and Manual coding, where learners wrote the code themselves. The AI Single Prompt approach resulted in the highest correctness scores on code-authoring tasks, but the lowest correctness scores on subsequent code-modification tasks during training. Our results provide initial insight into how novice learners use AI code generators and the challenges and opportunities associated with integrating them into self-paced learning environments. We conclude with various signs of over-reliance and self-regulation, as well as opportunities for curriculum and tool development.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员