We consider the problem of ranking objects from noisy pairwise comparisons, for example, ranking tennis players from the outcomes of matches. We follow a standard approach to this problem and assume that each object has an unobserved strength and that the outcome of each comparison depends probabilistically on the strengths of the comparands. However, we do not assume to know a priori how skills affect outcomes. Instead, we present an efficient algorithm for simultaneously inferring both the unobserved strengths and the function that maps strengths to probabilities. Despite this problem being under-constrained, we present experimental evidence that the conclusions of our Bayesian approach are robust to different model specifications. We include several case studies to exemplify the method on real-world data sets.


翻译:我们研究从带噪声的成对比较中对对象进行排序的问题,例如根据网球比赛结果对球员进行排名。我们采用解决该问题的标准方法,假设每个对象具有未观测的强度,且每次比较的结果以概率方式依赖于比较对象的强度。然而,我们并不预先假设技能如何影响结果。相反,我们提出一种高效算法,能够同时推断未观测的强度以及将强度映射到概率的函数。尽管该问题存在欠约束性,我们通过实验证据表明,贝叶斯方法的结论对不同模型设定具有鲁棒性。我们包含多个案例研究,以展示该方法在真实数据集上的应用。

0
下载
关闭预览

相关内容

排序是计算机内经常进行的一种操作,其目的是将一组“无序”的记录序列调整为“有序”的记录序列。分内部排序和外部排序。若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。反之,若参加排序的记录数量很大,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。内部排序的过程是一个逐步扩大记录的有序序列长度的过程。
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
专知会员服务
42+阅读 · 2021年1月18日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
时空数据挖掘:综述
专知
34+阅读 · 2022年6月30日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
专知会员服务
42+阅读 · 2021年1月18日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
相关资讯
时空数据挖掘:综述
专知
34+阅读 · 2022年6月30日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员